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glucose metabolism

@ energy is required for the normal functioning of the organs in a living organism

@ glucose provides most of the energy necessary to the body

glucose metabolism is the cornerstone of life
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pathologies

diabetes
@ liver is an important storage site for glucose
@ insulin works to keep glucose concentration normal

@ diabetes is a malfunction of insuline: glucose concentration in blood is altered
cancer

@ braunstein 1921: glucose secretion in the urine disappears in those who develop
cancer

@ warburg 1924: cancer cells increase glucose uptake in aerobic conditions

@ glucose cell metabolism: it's all about cancer (ward and thompson, cancer cells, 2012)

therefore: imaging glucose metabolism would help diagnosis, prognosis and therapy
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glucose-PET

positron emission tomography (PET) is a functional medical imaging modality

in principle, PET could image glucose metabolism by means of a procedure like this:
@ glucose (CoHi1206) is tagged by means of a positron emitter
@ the tagged glucose tracer is injected into the blood

@ each emitted positron annihilates with a tissue electron, emitting light along a
perfect straight line

© collimators collect the emitted light whose distribution is a signature of glucose
distribution in time and space
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glucose-PET

positron emission tomography (PET) is a functional medical imaging modality

in principle, PET could image glucose metabolism by means of a procedure like this:
@ glucose (CoHi1206) is tagged by means of a positron emitter
@ the tagged glucose tracer is injected into the blood

@ each emitted positron annihilates with a tissue electron, emitting light along a
perfect straight line

© collimators collect the emitted light whose distribution is a signature of glucose
distribution in time and space

warning: this can’t work:
@ %0 decays in 120 seconds
@ tritium decays in 2000 years (and is a weak beta emitter)

@ 'C decays in 20 minutes (but asks for very complex dynamic analysis)
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FDG-PET

fluorodeoxyglucose (FDG) is a glucose analog

HK

FDG FDG6P

CELL

FDG decays in 2 hours: FDG-PET is feasible
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mathematical model

FDG-PET sinograms

g(6.s)

@ f(x): tracer distribution

/ @ L(0,s): light path with orientation 6 at distance s from
the origin

8(s,0) = [y (9,4 F(x)dx

R: S(R*) — S(C?) Rf(e,s):z/ f(x)dx
L(0,s)

g =Rf
note that:
@ the radon transform is compact in (weighted) [*-spaces
@ therefore the inverse radon transform is not bounded
@ therefore naive solution are numerically unstable

@ therefore, at some stage, regularization is needed
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the inverse problem of FDG-PET image reconstruction:
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image reconstruction: maximum likelihood

the inverse problem of FDG-PET image reconstruction:
given the FDG-PET sinogram reconstruct the FDG distribution in the whole body

bayes theorem + MAP: poisson noise: kullbach-leibler
Tprior (f)7(g|f) L(f | Rf); —
n(flg) = 22/ (f.g) = Zg:og +(Rf)i — &
fest = arg max(f|g) fost = arg rpggw(glf) = argmin L(x, y)
example of pior () : f>0 EM. D _ O L g
’ RT1  Rf(k
issues:

@ how to regularize: choose the right stopping rule (benvenuto and piana, inverse
problems, 2014)

@ how to go fast : gradient projection approaches (benvenuto, zanella, zanni and bertero,
inverse problems, 2010)

@ how to encode more sophisticated information in 7Tpior(f) (calvini, massone, nobili and

rodriguez, |IEEE transactions on nuclear science, 2006; sorrentino et al, annals of applied
statistics, 2013)
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compartments

from body to tissue

Glucose-Alanine Cycle

MUSCLE

Uit ATP bt s contacion.

@ image reconstruction provides information on FDG metabolism at a whole body
level using static data

@ in order to have information on tissue metabolism one needs

» dynamic data
» compartmental analysis
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two-compartment model

(sokoloff et al, j neurochem, 1977)

e, ing
cb — cf — cm
k W2 kim

compartment b: tracer input
compartments f and m: free (out of cells) and metabolized FDG
Cp: input tracer concentration

Cr and Cp,: concentration of free and metabolized FDG

ey, Kof s Kmf > kem: tracer coefficients (minutes—1): measure the efficiency with which
tracer passes from one functional compartment to the other
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two-compartment model

(sokoloff et al, j neurochem, 1977)

e, ing
cb — cf — cm
k W2 kim

compartment b: tracer input

compartments f and m: free (out of cells) and metabolized FDG
Cp: input tracer concentration

Cr and Cp,: concentration of free and metabolized FDG

ey, Kof s Kmf > kem: tracer coefficients (minutes—1): measure the efficiency with which
tracer passes from one functional compartment to the other

physical assumptions:

tracer is uniformly distributed in each compartment
diffusive effects are neglected
physiological processes are in a steady state

conservation of tracer between compartments holds
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forward problem

L K Cr = —(kor + kmr) Cr + kimCim + ks Co
| — |[L& =& Com = kit Cr — ki
khf kim m mf &f fm&m
o —(kor + kmr) ke _( G(t) (&
M= < kot —km WO =1 "o “=la

C = MC + kpW

C(t) = ke /t Co(u) exp((t — u)M)erdu
0
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inverse problem

@ the measured data are C, and Cr + G,

@ (, is obtained from Region of Interests drawn over PET images of the left

ventricle at many times t
= [
Sk
kM - kfm

@ Cr + Cn is obtained from Region of Interests drawn over PET images of the
overall organ at many times t

@ the inverse problem to solve is

t
Cr+Cn= Oékab/ Go(u)exp((t — u)M)erdu o = ( 1 )
0
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uniqueness

(delbary, garbarino and vivaldi, inverse problems, 2016)

theorem: given k and k’ solutions of the equation

¢
Cr+ Cm = Olkab/ Cp(u)exp((t — u)M)erdu o= ( i )
0

such that k, k' € R% \ {0}, then k = k'

Proof (sketch): computing the laplace transform of the equation leads to

al(s— MY leg=a(s— M) le.
this implies
Q) _ Q(s)
P(s) ~ P'(s)

where Q(s), P(s) are co-prime polynomials of degree 1 and 2, respectively. this implies
Q(s) = Q'(s) and P(s) = P’(s). this in turn implies k = k’
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inversion method

given k = (ka, kof, kmf, kin) € RE and C, measured from PET images, define
t
F:RY = CY(Ry)  [F(K)](t) = aTkﬂ,/ Co(u) exp((t — u)M)erdu
0

and find k such that
F(k) =G+ Cn



compartments

inversion method

given k = (ka, kof, kmf, kin) € RE and C, measured from PET images, define
t
F:RY = CY(Ry)  [F(K)](t) = aTkﬂ,/ Co(u) exp((t — u)M)erdu
0

and find k such that
F(k) =G+ Cn

newton’s algorithm:
F(k) := (Cr + Cm) — F(k)

F(k)=0
initial guess: k=ko+h
F'(ko)h = —F(ko)  (regularization needed)

update: ko =k



metabolism: tissue

metabolism: tissue



metabolism: tissue

liver - 1

@ liver both stores and releases glucose
@ the need to store or release glucose is signaled by insulin
@ two possible therapies against insulin malfunction

@ look for drugs that mimic insulin
@ look for drugs that regulate glucose release from liver: metformin
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liver - 2

(garbarino, vivaldi, buschiazzo, delbary, marini, caviglia, piana and sambuceti, european journal
of nuclear medicine and molecular imaging research, 2015)

C

a
(arterial blood)

CS
s (suprahepatic
C e vein)

L

blood + FDG

blood + FJG (free tissue)

(venous blood-
portal vein)

/

Cm
(metabolized
tissue)
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liver - 3

(garbarino, vivaldi, buschiazzo, delbary, marini, caviglia, piana and sambuceti, european journal
of nuclear medicine and molecular imaging research, 2015)

. C,

C \
blodd + FDG (arterial blood)

(free tissue)

G
(metabolized blood + fOG
tissue)

CS
(suprahepatic
vein)

Gut | blood + FDG
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liver - 4
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parametric imaging - 1

(scussolini, garbarino, sambuceti, caviglia and piana, inverse problems, 2017)
is it possible to solve the compartmental inverse problem pixel-wise?

numerical scheme:
@ gaussian smoothing (to increase the signal-to-noise ratio)
@ segmentation (to automatically identify the region of physiological interest)

© pixel-wise regularized gauss-newton inversion of the nuclear data
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parametric imaging - 2
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a (possible) breakthrough
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a new model - biochemistry

~

GLUCOSE

\/
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a new model - data and unknowns

INCUBATION TUMOR
MEDIUM CELL
ky k3

e Cr c,

unknowns: five kinetic parameters (1/min) mimicking the actions of the enzymes GLUT,
HK, G6PT, G6Pase

input data:
@ the input function Cp
@ the overall FDG concentration in the tumor: Cpess = Cr + C, + G, where

» Cr is the cytosolic free tracer
» C, is the cytosolic phosphorylated tracer
» C, is the phosphorylated tracer in the endoplasmic reticulum
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forward problem

INCUBATION TUMOR
MEDIUM CELL
ky ks
C; Cr [
ks
1\'4.’ ks
¢,
C=MC+ kW

—(ko+ks) O ke Cr Co(t)
M:( A o) cz(cp) W(t):( o)
0 ks —ke C 0

t
Cneas := Cr + G + G, = k1aT/ Co(u) exp((t — u)M)erdu
0

note: uniqueness holds (scussolini and caviglia, j. math. biol., submitted)
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LAST FRAME ACQUISITION

LANE AXIAL PLANE
ROI - CT26 tumor

ROI - arterial IF

(a) Mouse model - ROIs
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experimental k3 = 0.91 +0.12

k3
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