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Introduction

Natalia Petrovskaya Classification of spatial patterns DSABNS 07-09 February 2018



Examples of biological invasion

200 Random dispersal in theoretical populations 

2*5. Empirical confirmation. In practice there is rarely sufficient information to construct 
the contours of population density with accuracy. One contour, however, can sometimes 
be drawn-that for the low 'threshold' density (depending on the thoroughness of the survey) 
at which the population begins to escape notice altogether. 

Equation (4), derived initially on theoretical grounds, is well illustrated by the spread of 
the muskrat, Ondatra zibethica L., in central Europe since its introduction in 1905. Fig. 1, 
based on Ulbrich (1930), shows the apparent boundaries for certain years. If we are prepared 
to accept such a boundary as being representative of a theoretical contour, then we must 
regard the area enclosed by that boundary as an estimate of irr2. The relation between the 
time and Varea is shown graphically in Fig. 2. 

1910 1920 1930 

Fig. 1 Fig. 2 

2*6. The analogy with diffusion. If a random particle suffers a displacement e in any 
direction at regular intervals of time (t, t + w, t + 2o, ...), and if the probability density is 
denoted by 3fi, it is clear that 3f (x, y, t + w) is the mean value of 3b (y, , t) for all (g, ) on a circle 
of radius e around (x, y). That is, 

~r(x, y, t + ) =2 J of (x + e cos a, y + e sin a, t) dO. 

Expanding by Taylor's theorem and noting that 

f:cos dO = f sin 6 dO = f sin 0 cos 0 dO = 0, 

Lcos2Odo = : sin2Odo = 7T, 

we obtain for infinitesimally small e and wi the relation 

at 4 V2b (6) 

where V2 = la2+ a 
aX2 ~yV 
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FIGURE 8.1: Geographical spread of Japanese beetle in the United States
from the place of its original introduction. Alternating grey and black colors
show the areas invaded during successive time intervals (from United States
Bureau of Entomology and Plant Quarantine, 1941).

An attempt to explain the nature of accelerating waves has been made by
means of linking them to “non-Gaussian” diffusion when every single event
of dispersal follows not the normal distribution but a distribution with much
slower rate of decay at large distances (see Section 2.2). Mathematically, it
means that the models should be based on integral-difference equations, not
diffusion-reaction ones. Indeed, for some plant species this approach works
very well, cf. Clark et al. (1998). For insect species, however, the situation is
different. While in the case of seed or pollen spreading its fat-tailed dispersal
can be linked to the peculiarity of turbulent wind mixing, in the case of
insects, they are not just passively born by the wind. A mechanistic theory of
insects’ dispersal accounting for their ability to self-motion is lacking and the
existing data are usually of poor accuracy so that they can be easily fitted by

Invasion of muskrats Invasion of Japanese beetle
(Ondatra zibethica) (Popillia japonica)
in central Europe in the United States
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Is it always 2-D traveling front?

Ecological examples and applications 173

 

FIGURE 8.1: Geographical spread of Japanese beetle in the United States
from the place of its original introduction. Alternating grey and black colors
show the areas invaded during successive time intervals (from United States
Bureau of Entomology and Plant Quarantine, 1941).

An attempt to explain the nature of accelerating waves has been made by
means of linking them to “non-Gaussian” diffusion when every single event
of dispersal follows not the normal distribution but a distribution with much
slower rate of decay at large distances (see Section 2.2). Mathematically, it
means that the models should be based on integral-difference equations, not
diffusion-reaction ones. Indeed, for some plant species this approach works
very well, cf. Clark et al. (1998). For insect species, however, the situation is
different. While in the case of seed or pollen spreading its fat-tailed dispersal
can be linked to the peculiarity of turbulent wind mixing, in the case of
insects, they are not just passively born by the wind. A mechanistic theory of
insects’ dispersal accounting for their ability to self-motion is lacking and the
existing data are usually of poor accuracy so that they can be easily fitted by

Invasion of Japanese beetle Invasion of Gypsy moth
(Popillia japonica) (Lymantria dispar)
in the United States in the United States

2-D traveling front Patchy invasion
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Geographic spread of Gypsy moth

(by courtesy of Andrew Liebhold)
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Modelling biological invasion
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The IDE-based framework

We consider a system of integro-difference equations:

ut+1(r) =

∫
Ω

k (u)
(
|r− r′|

)
f
(
ut
(
r′
)
, vt
(
r′
))

dr′,

vt+1(r) =

∫
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k (v)
(
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)
g
(
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)
, vt
(
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• The dispersal kernel k (|r− r′|) gives the probability
density of the event that an individual located at the
position r′ before the dispersal will be found at the position
r after the dispersal.

• The Gaussian kernel

kG
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|r− r′|

)
=

1
2πα2

i
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2α2
i

)
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The IDE-based framework

We assume that both species have a similar life cycle so that
they interact during their maturation stage:

ũt(r) = f (ut (r) , vt (r)) , ṽt(r) = g (ut (r) , vt (r)) ,

where ũt(r) and ṽt(r) are the population densities prior the
dispersal stage,

f (u, v) =
a (u(r))2

1 + b (u(r))2 · exp (−v(r)) ,

g(u, v) = u(r)v(r),

a = A/δ, b = (B/δ)2, A is the prey intrinsic growth rate, 1/B is
the prey density for which its per capita growth rate reaches its
maximum, and δ is the predator growth rate.
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The parametric plane

L.A.D. Rodrigues, D.C.Mistro, S.V.Petrovskii (2012) Pattern formation in a space- and time-discrete

predator-prey system with a strong Allee effect. Theor. Ecol. 5:341-362.
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Solution in Domain 2 of the parametric plane
The temporal dynamics is oscillatory for any parameters from
Domain 2. Topologically, the density distribution is a convex
continuous front (a = 4.0 and b = 1.8; time t = 200).
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Solution in Domain 3 of the parametric plane

The pattern of spread depends on the sub-domain of Domain 3
where the parameters are taken. A concave continuous front
obtained for a = 4.0 and b = 0.716; time t = 200.
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Solution in Domain 3 of the parametric plane

Patchy spread (without any continuous front) obtained at time
t = 200 for parameters a = 4.0 and b = 0.714 taken from
Domain 3.
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Detection and classification of spatial patterns
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Spatial patterns in the parametric plane (Domain 3)
blue – the extinction, orange – a concave continuous front,
grey – a convex continuous front, green – the patchy invasion
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Real-life ecological data: patchy or continuous?

(by courtesy of Andrew Liebhold)
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Accuracy of real-life ecological data

• Very small values of the population density are often
impossible to detect due to limitations of
sampling/monitoring techniques, the minimum detectable
density being called the ‘detection threshold’.

• How much information about the population density is
detected depends also on the number of sampling
locations used in a monitoring routine.

• Correspondingly, we investigate the sensitivity of the
spatial pattern to the cut-off parameter C and the number
of sampling locations N.

Natalia Petrovskaya Classification of spatial patterns DSABNS 07-09 February 2018



The cut-off parameter

• The density u(x , y) 6= 0 at any point (x , y).

• Small values of the population density are ignored in the
model and in real-life monitoring.

• Cut-off parameter C

û(x , y) = u(x , y) for u(x , y) > C,

û(x , y) = 0 for u(x , y) ≤ C.
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Patchy density distribution from a mathematical model

Cut-off, C: 1% of the max density value,
Grid, N: 1025× 1025 points
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Binary images

Binary presence/absence maps are defined as

û(x , y) = 1 for u(x , y) > C, û(x , y) = 0 for u(x , y) ≤ C.
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The number of objects

• We use the Image Processing Toolbox in MATLAB to count
number n of separate patches for a given value of cut-off
C.

• We ignore a complex topological structure of the spatial
density distribution within any sub-domain of the non-zero
density with a closed boundary (e.g. density patterns
behind a continuous front)

• A concave front then counts as a single object.

• A sufficiently large increase in the cut-off C should break
the single object into a collection of multiple objects.
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Transformation of a continuous front distribution

The number of disconnected objects n for the
concave-front pattern when cut-off value C is varied with
an increment of 0.001.

C 0.05 · · · 0.826 · · · 0.858 · · · 0.879 ... 0.905
n 1 1 5 5 6 6 10 10 14

Natalia Petrovskaya Classification of spatial patterns DSABNS 07-09 February 2018



Example: decomposition of a concave front

A concave continuous front pattern is transformed into a patchy
distribution consisting of six disconnected patches at C = 0.860
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Transformation of a continuous front distribution

The number of objects as a function of the cut-off value C for
two concave-front distributions. Parameters are a = 6.0,
b = 0.710 and a = 5.7, b = 0.711.
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Transformation of a patchy distribution

The number of disconnected objects n for the patchy
pattern when cut-off value C is varied with an increment of
0.001.

C 0.05 · · · 0.065 · · · 0.108 · · · 0.157 · · · 0.540
n 3 3 5 5 9 9 13 13 15
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Example: decomposition of a patchy pattern

Transition from five to nine separate patches happens at
C = 0.130.
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Transformation of a patchy distribution

The number of objects as a function of the cut-off value C for
two patchy distributions. Parameters are a = 5.2, b = 0.71 and
a = 5.9 and b = 0.71.
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A concave distribution on a fine computational grid

a = 6.0, b = 0.71
The density distribution as a solution to the IDE problem:
grid is 1025× 1025 points
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A concave distribution on a coarse sampling grid

a = 6.0, b = 0.71
Collecting information about the density distribution:
grid is 33× 33 points
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A concave distribution on a fine and coarse grid

a = 6.0, b = 0.71
grid is 1025× 1025 points grid is 33× 33 points
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Transformation of the concave distribution

• Generate the binary map of the density distribution on a
coarse grid.

• Compute the number of disconnected objects on the
coarse grid.

• Decrease the number of grid points, restore the density
distribution (i.e. take data from the original fine grid) and
repeat the above.
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Transformation of the concave distribution

The number of disconnected objects n for the concave
pattern when the number N of grid points decreases

N 1025 513 257 129 65 33 17 9 5 3
n 1 1 1 1 1 1 1 4 4 0
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A patchy distribution on a fine and coarse grid

a = 6.4, b = 0.71
grid is 1025× 1025 points grid is 33× 33 points
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Transformation of the patchy distribution

The number of disconnected objects n for the patchy
pattern when the number N of grid points decreases

N 1025 513 257 129 65 33 17 9 5 3
n 35 33 29 17 13 13 4 4 2 0
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Conclusions

Both continuous front and patchy spatial patterns remain
robust to the factors that can affect the results of
monitoring.

• Patchy invasion is not an artefact of a poor monitoring
protocol.

• Future study is required to identify the factors affecting the
spatial pattern of invasive spread in the context of the
invasive species monitoring.
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