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The spread of invasive species

Invasive species are alien species (e.g. transported for leisure hunt-
ing/fishing purposes) that supersede native species causing ecological
damage to the recipient ecosystem. Examples:

Orange hawkweed and feral cat in Victorian Alpine National Park (Australia)

Tree of heaven and wild-boar in Alta Murgia National Park (Italy)

Brook trout in Gran Paradiso National Park (Italy)
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The control actions

Piano di gestione triennale del cinghiale nel Parco Nazionale dell’Alta
Murgia- Delibera n. 21/2012 del 18/12/2012.

LIFE+ Alta Murgia - Control and eradication of the invasive and exotic
plant species Ailanthus altissima in the Alta Murgia National Park.

LIFE+ BIOAQUAE - Biodiversity Improvement of Aquatic Alpine
Ecosystems: eradication of non-native fish species from some high
altitude alpine lakes.

We search for the best control effort and allocation strategy for
eradicating/reducing the abundance of the invasive species in the

support of an enhanced decision making.
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Model formulation

We focus on the temporal aspects of management with the assumption
that the abundance of the species has a much greater influence on the
dynamics than its spatial distribution.
The dynamics of the invasive population is described by the ODE

u̇(t) = u f(u)− u (µE)q , t ∈ [0, T ]

where

u f(u) represents the density-dependent population growth.

u (µE)q represents the effects of the control actions E on the
population dynamics:

� µ > 0 is a scaling parameter which accounts for the control
effectiveness;

� q ∈ Q ∩
[

1
2 , 1
)

is a diminishing returns parameter.

Baker, C.M. and M. Bode, Placing invasive species management in a spatiotemporal
context, Ecological Applications, 26, 2016, 712–725.
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The study cases
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feral cats in Australia

logistic growth
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k

)
wild-boars in Italy3

growth with Allee effect

r the intrinsic growth rate, k the carrying capacity, k0 the Allee threshold
3
Lacitignola, D., Diele, F., Marangi, C., Dynamical scenarios from a two-patch predator prey system

with human control - Implications for the conservation of the wolf in the Alta Murgia National Park,
Ecol. Model. 316, 2015, 28–40.
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The optimal control problem

The control set is

Ub =
{
E ∈ L1(0, T ) : 0 ≤ E ≤ b

}
, b > 0

We search for the optimal control function E∗ ∈ Ub which realizes

min
E∈Ub

∫ T

0
µE(t) dt

subject to the state equation

u̇ = u f(u)− u (µE)q, t ∈ [0, T ]

with fixed initial and final conditions

u(0) = u0, u(T ) = uT , 0 < uT < u0 ≤ k
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Theorem

For T sufficiently large, the minimization problem has an optimal
solution.a

aBaker C.M., F. Diele, D. Lacitignola, C. Marangi, A. Martiradonna. Optimal
Control of Invasive Species through a Dynamical Systems Approach, Discrete &
Continuous Dynamical Systems - B, 2017, under revision.

Proof.4

The right hand side of the state equation, f̃(u,E) = r u (1− u
k

)−uµq Eq,
is continuous in (u,E) and continuously differentiable w.r.t. u.

Moreover |f̃(u,E)| ≤ C(1 + |u|).
The set of the admissible controls steering the state variable from u0 to
uT , at the time T , is nonempty.

The sets {(y, y0) ∈ R2 : y = f̃(u,E), y0 ≥ µE, for some E ∈ Ub} are
convex, for all u.

4Bressan, A., Piccoli B., Introduction to the Mathematical Theory of Control, AIMS
Series on Applied Mathematics, 2, Springfield, 2007.
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First-order necessary conditions for optimality

Let (E∗, u∗) be an optimal solution. There exists a piecewise differen-
tiable function λ > 0 such that

H(u∗(t), E∗(t), λ(t)) ≤ H(u∗(t), E(t), λ(t)), ∀E ∈ Ub, t ∈ [0, T ],

where
H(u,E, λ) = µE + λu f(u)− λuµq Eq

is the Hamiltonian function. Moreover λ obeys the adjoint equation

λ̇ = −λ f(u∗)− λu∗ f ′(u∗) + λµq E∗q

and, since limE→0+
∂H
∂E (u∗, E, λ) = −∞,

0 < E∗ ≤ b if ∂H
∂E (u∗, E∗, λ) = µ− q λ u∗ µq E∗q−1 = 0

E∗ = b if ∂H
∂E (u∗, b, λ) = µ− q λ u∗ µq bq−1 < 0
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E∗(t) = min {ϕ(u∗(t), λ(t)), b}, where ϕ(u, λ) = 1
µ (q u λ)

1
1−q

b0
E

ϕ(u∗(t2), λ(t2)) > b
⇒ E∗(t2) = b

H (u∗(t2), E, λ(t2))

H (u∗(t1), E, λ(t1))

ϕ(u∗(t1), λ(t1)) < b
⇒ E∗(t1) = ϕ(u∗(t1), λ(t1))

CONVEXITY:
∂2H
∂E2 (u,E, λ) = q (1− q)λ uµq Eq−2 > 0, u, λ, E > 0.
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Theorem (Baker, Diele, Lacitignola, Marangi, Martiradonna, 2017)

For T sufficiently small, bounded solutions of the state-adjoint system

u̇ = u f(u)− uµq E∗u,λq, u(0) = u0, u(T ) = uT ,

λ̇ = −λ f(u)− λu f ′(u) + λµq E∗u,λ
q,

with E∗u,λ(t) = min
{

1
µ (q u(t)λ(t))

1
1−q , b

}
, are unique.

Proof. (u, λ) = (eε t p, e−ε t w), (ū, λ̄) = (eε t p̄, e−ε t w̄) two solutions, ε > 0.
Boundedness of the solutions and the assumption 1

2
≤ q < 1, give

|E∗u,λ
q − E∗

ū,λ̄
q | ≤ C |uλ− ū λ̄| = C|pw − p̄ w̄|, C > 0.

After some calculations:

(ε− C̃1 − C̃2 e
2 ε T )

∫ T

0

[
(p− p̄)2 − (w − w̄)2

]
dt ≤ 0, C̃1, C̃2 > 0.

For ε > C̃1 + C̃2 and T <
1

2 ε
log

ε− C̃1

C̃2

, uniqueness holds.
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The state-control optimality system

State-adjoint system
u̇ = u f(u)− u (q u λ)

q
1−q

λ̇ = −λ f(u)− λu f ′(u) + λ (q u λ)
q

1−q

↓
State-control system

u̇ = u f(u)− uµq Eq
Ė = 1

q−1 u f
′(u)E

Invariant for the state-control system: I(u,E) = (q− 1)E+
f(u)

µq
E1−q

I(u,E) = I(k, 0) = 0⇒


E = 0

the stable manifold
of the saddle P ∗ = (k, 0)

E =
1

µ

(
f(u)

1− q

) 1
q

the unstable manifold of P ∗

A. Martiradonna (CNR-IAC) Optimal Control of Invasive Species Feb. 8, 2018 12 / 21



The state-control optimality system. Logistic growth.
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Theorem (Free terminal time, logistic growth)

Let µ > 0 be a fixed constant, T̄ > 0 arbitrarily large, and consider the control set

Ub = {E ∈ L1(0, T ) : 0 ≤ E ≤ b, 0 ≤ T ≤ T̄}, with b >
1

µ

(
r

1− q

)1/q

and q ∈ Q with

1
2
≤ q < 1. If 0 < uT < u0 < k, the minimization problem

min
(E,T )∈Ub×[0,T̄ ]

∫ T

0
µE(t) dt

subject to u̇ = r u(1−
u

k
)− uµq Eq , 0 ≤ t ≤ T, u(0) = u0, u (T ) = uT ,

has the optimal solution (E∗, T ∗), where T ∗ =
1− q
r q

log
u0(k − uT )

uT (k − u0)
and

E∗(t) =
1

µ
e

r
1−q

(t−T∗)

 r (k − uT )

(1− q)
[
uT − (uT − k) e

rq
1−q

(t−T∗)
]
 1

q

, t ∈ [0, T ∗].

Moreover, the optimal density solution is provided by

u∗(t) =
uT k

uT − (uT − k) erq(t−T∗)/(1−q)
, t ∈ [0, T ∗].
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The state-control optimality system. Growth with Allee.
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Theorem (Free terminal time, growth with Allee)
Let µ > 0 be a fixed constant, T̄ > 0 arbitrarily large, and consider the control set

U0,b = {E ∈ L1(0, T ) : 0 ≤ E ≤ b, 0 ≤ T ≤ T̄}, with b ≥
1

µ

(
r (k − k0)2

2 (1− q) k0 k

)1/q

, and q ∈ Q, with

1
2
≤ q < 1. If k0 < uT < u0 < k, the minimization problem

min
(E,T )∈Ub×[0,T̄ ]

∫ T

0
µE(t) dt

subject to u̇ = r u

(
u

k0

− 1

)(
1−

u

k

)
− uµ

q
E

q
0 ≤ t ≤ T, u(0) = u0, u (T ) = uT , has the optimal

solution (E∗, T∗), where T
∗

=
1

A1

log

[(
uT

u0

)B
(
u0 − k0

uT − k0

)C (
k − uT

k − u0

)D
]
, and

E
∗
(t) =

1

µ

[
r

1− q

(
u∗(t)

k0

− 1

)(
1−

u∗(t)

k

)]1/q

, t ∈ [0, T
∗
].

Moreover, the optimal solution u∗(t) satisfies

(u− k0)C

uB (k − u)D
=

(uT∗ − k0)C

uB
T

(k − uT∗ )D
e
A1(T∗−t)

, t ∈ [0, T
∗
].

with A1 =
r q

1− q
, B =

1

k k0

, C =
1

k0(k − k0)
, D =

1

k(k − k0)
.
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A non-autonomous optimal control problem

Introduce a discount factor δ > 0 in the objective functional.

J (E∗, T ∗) = min
E∈Ub, T∈[0,T̄ ]

∫ T

0

e−δ tE(t) dt

u̇ = r u
(

1− u

k

)
− u (µE)

q
, u(0) = u0, u(T ) = uT < u0 ≤ k

Results:

I(t, u, E) =
e−δ t

q

[
(q − 1)E +

r

µq

(
1− u

k

)
E1−q

]
+ δ

∫ t

0

e−δ sE(s) ds,

is an invariant for the state-control system;

(q − 1)E∗(T ∗) +
r

µq

(
1− uT

k

)
E∗(T ∗)1−q

= 0.

Then J (E∗, T ∗) =
1

δ q

[
q E∗0 −

(
E∗0

q − r

µq

(
1− u0

k

))
E∗0

1−q
]

Martiradonna A., Diele F., Marangi C., Analysis of state-control optimality system for
invasive species management, Springer Proceedings in Mathematics & Statistics, ISAAC
2017, submitted.
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A non-autonomous optimal control problem
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Spatio-temporal control with budget constraint

Fix the project length T , introduce the spatial domain Ω ∈ R2 and a budget
constraint B > 0 in the objective function. Find

E∗ ∈ U = {E ∈ L∞(Ω× [0, T ]) : 0 ≤ E(x, t) ≤ B for all (x, t) ∈ Ω× [0, T ]}

which realizes

min
E∈U

[∫
Ω

e−δ T ν(x)u dx +

∫
Ω×[0,T ]

e−δt
(
ω(x, t)u+ Eq + c

(
E

B

)2q−1
)
dx dt

]
,

subject to the dynamics

∂u

∂t
−D∆u = r u

(
ρ(x) − u

k

)
− µuE

1 + hµu
, (x, t) ∈ Ω× [0, T ]

u(x, 0) = u0(x), x ∈ Ω, ∇u · n = 0, on ∂Ω× [0, T ].

Baker C.M., F. Diele, C. Marangi, A. Martiradonna, S. Ragni. Optimal control
governed by a diffusion PDE with Holling type II reaction term and budget constraint.
Natural Resource Modeling, 2018, submitted.
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Optimality system:

∂u

∂t
−D∆u = r u

(
ρ(x) −

u

k

)
−

µuE∗

1 + hµu
,

u(x, 0) = u0(x), x ∈ Ω, ∇u · n = 0, on ∂Ω× [0, T ].

∂λ

∂t
+D∆λ = δ λ− r ρ(x)λ+

2 r

k
uλ+

µE∗ λ

(1 + hµu)2
− ω,

λ(x, T ) = ν(x), x ∈ Ω, ∇λ · n = 0, on ∂Ω× [0, T ].

E∗(x, t) = min{ϕα(n∗(x, t), λ(x, t)), B}

where

ϕα(s, z) =


[
q

2α

(√
1 + 4αµ s z

q2 (1+hµ s)
− 1
)] 1

q−1
, if α > 0,

(
µ s z

q (1+hµ s)

) 1
q−1

, if α = 0,

(1)

for each s, z ≥ 0 and α = c (2q − 1)/B2q−1.

The approximation uses a semi-discretization in the space variable performed by FE method;
a splitting and composing procedure in forward-backward form for the diffusive and the
reaction term. Symplectic-exponential Lawson procedure for integrating the reaction term.
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Conclusion

Taking into account the spatio-temporal feature of the invasive species over
large and irregular environments is a challenging task in optimal control of
invasive species.

Ongoing applications:

Ailanthus altissima (tree of heaven)
in Alta Murgia National Park, Italy

Salvelinus fontinalis (brook trout)
in Gran Paradiso National Park,

Italy

The model may be further enriched by taking into account the age. The fish
age-structured model presented in (Marinoschi G., Martiradonna A., Fish populations

dynamics with nonlinear stock-recruitment renewal conditions. Applied Mathematics and

Computation, 2016, 277: 101-110.) might be the proper choice e.g. to treat the case
of the brook trout.

Thank you for the attention
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