
Torino, DSABNS 2018

Numerical bifurcation analysis of
infinite-delay equations in biology

Francesca Scarabel

Dep. of Mathematics and Statistics, University of Helsinki

February 7, 2018

Francesca Scarabel (Helsinki) Numerical bifurcation analysis of infinite-delay equations in biology 1 / 23



WHY?
motivation and background
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Example from ecology
an age-structured population

Renewal equation for population birth rate

b(t) =
∫ amax

arepr

fertility︷︸︸︷
β(a)

ind of age a︷ ︸︸ ︷
F(a) b(t − a) da

often coupled with a delay-differential equation for the environmental
variable (substrate, prey,. . . )

dS
dt
(t) = f(S(t))︸ ︷︷ ︸

consumer-free

−
∫ amax

0

consumption︷︸︸︷
γ(a)

ind of age a︷ ︸︸ ︷
F(a) b(t − a) da
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Why. . .

. . . infinite delay?

• to model the effect of the past on the present
(reproduction of individuals, retarded signals or reactions, . . . )

• mathematically, probability densities have infinite support
(exponential, gaussian,. . . )

• biologically, impossible a priori bounds
(history of local habitats, beginning of an epidemic,. . . )
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Why. . .

. . . numerical bifurcation analysis?

• interest in long-term behaviour
(persistence/extinction, equilibria/periodic, chaos,. . . )

• influence of model parameters

• complicated models, very complicated (impossible?) analytical results

• increasing applications to real biological systems
(size-structured populations, stem cells models,. . . )
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Our approach: pseudospectral discretization

input:

nonlinear delay system

Approximation with ODEs

+

software for ODEs

output: bifurcation analysis

[Breda, Diekmann, Gyllenberg, S., Vermiglio, SIAM J. Appl. Dyn. Syst., 2016]
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WHAT?
delay equations
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Delay equation
a rule for extending a function given its past

Let τ > 0 be the maximal delay and I the delay interval:

• if τ <∞, let I = [−τ, 0]
• if τ =∞, let I = (−∞, 0]

Given a function y, we define the history function yt : I → Rd

yt(θ) = y(t + θ), θ ∈ I

yt ∈ Y space of functions → infinite dimension!

Francesca Scarabel (Helsinki) Numerical bifurcation analysis of infinite-delay equations in biology 8 / 23



Delay equation
a rule for extending a function given its past

Let τ > 0 be the maximal delay and I the delay interval:

• if τ <∞, let I = [−τ, 0]
• if τ =∞, let I = (−∞, 0]

Given a function y, we define the history function yt : I → Rd

yt(θ) = y(t + θ), θ ∈ I

yt ∈ Y space of functions → infinite dimension!

Francesca Scarabel (Helsinki) Numerical bifurcation analysis of infinite-delay equations in biology 8 / 23



Weighted state-spaces for τ =∞
• ρ > 0 scaling parameter

• w(θ) = eρθ weight function on I = (−∞, 0]

• ψ̂(θ) := w(θ)ψ(θ) for any ψ : I → Rd

• weighted spaces

L1
ρ(I,Rd) := {ϕ : I → Rd s.t.

∫
I
|ϕ̂(θ)|dθ <∞}

C0,ρ(I,Rd) := {ψ : I → Rd s.t. sup
θ∈I
|ψ̂(θ)| <∞, lim

θ→−∞
ψ̂(θ) = 0}

• note: constant functions belong to L1
ρ and C0,ρ

• (if τ <∞, we take ρ = 0)
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We consider

renewal: x(t) = F(xt) F : X→ Rd

X = L1
ρ(I,Rd)

differential: ẏ(t) = G(yt) G : Y → Rd

Y = C0,ρ(I,Rd)

coupled systems:

{
x(t) = F(xt, yt)

ẏ(t) = G(xt, yt)
F, G : X × Y → Rd

For notational convenience:

• d = 1

• delay differential equations
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From IVP to ACP
Initial value problem for y(t){

ẏ(t) = G(yt) t ≥ 0

y(θ) = ψ(θ) θ ∈ I

m

Abstract Cauchy problem for v(t) := yt ∈ Y{
v̇(t) = A(v(t)) t ≥ 0

v(0) = ψ

whereA is the infinitesimal generator of the family of solution operators:

A(ψ) = ψ′, ψ ∈ D(A)
D(A) = {ψ ∈ Y s.t. ψ′ ∈ Y and ψ′(0) = G(ψ)}
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Stability of equilibria

Principle of linearized stability
G continuously Fréchet differentiable, y equilibrium. Then the stability of y
is determined by the linearized system:

• if all the roots of the characteristic equation have negative real part,
y is exponentially stable

• if there exists a root with positive real part, y is unstable.

Properties of a linearA
• A is not compact, (σ(A) has not only eigenvalues)

• there exists ρ > 0 such that {<(λ) > −ρ} contains only eigenvalues,
and they are roots of the characteristic equation

• freedom of choice 0 < ρ < ρ

[Diekmann, Gyllenberg, SIAM J. Differential Equations, 2012]
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HOW?
pseudospectral discretization
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Discretization

Mesh of M + 1 nodes in I
(−τ =) θM < · · · < θ0 = 0

function in Y ≈ polynomial of degree M

ψ(θ) ≈ pM(θ) =
M∑

j=0

`j(θ)ψ(θj)

ψ̂(θ) ≈ p̂M(θ) = eρθ
M∑

j=0

`j(θ)
ψ̂(θj)

eρθj

with `j(θ) Lagrange polynomials: `j(θ) =
∏
k6=j

θ − θk

θj − θk
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Pseudospectral collocation

v0(t) ≈ v(t)(0),

v̂j(t) ≈ eρθj v(t)(θj), j = 1, . . . ,M
−→
V = (v̂1, . . . , v̂M)

T ∈ RdM

so that
v(t) ≈ pM(v0,

−→
V ) = `0(θ)v0(t) +

M∑
j=1

`j(θ)
v̂j(t)

eρθj

“The polynomial pM satisfies exactly the abstract equation on the nodes”

Abstract equation in Y

v̇(t) = A(v(t))

v(t) ∈ D(A) = {ψ′(0) = G(ψ)}

⇒
ODE in Rd(M+1)

−̇→
V = D̂M

−→
V + d̂Mv0 − ρ

−→
V

v̇0 = G(pM(v0,
−→
V ))
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A closer look at the ODE system

−̇→
V = D̂M

−→
V + d̂Mv0 − ρ

−→
V

v̇0 = G(pM(v0,
−→
V ))

The matrices d̂M ∈ RdM, D̂M ∈ RdM×dM are

• independent of the specific delay equation

• explicitly available from the nodes: d̂ij = eρ(θi−θj)`′j(θi), i, j = 0, . . . ,M

G : Y → Rd

• appears only in the equation for v0

• applied to the interpolating polynomial, no special assumptions

• in the case of RE, we apply the implicit function theorem:
u0 = F(pM(u0,

−→
U ))⇒ u0 = F̃M(

−→
U )
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Approximation of equilibria and their stability

• one-to-one correspondence of equilibria

• τ <∞ and Chebyshev extremal nodes: eigenvalues are approximated
with spectral accuracy: error bound ε(M) = O

(
M−k

)
, for any k ∈ N

Breda, Maset, Vermiglio, SIAM J. Sci. Comput., 2005

• τ =∞: spectral accuracy is conjectured. With Laguerre nodes
(orthogonal w.r.t. eρθ), the spurious eigenvalues align along <λ = −ρ

−1 −0.5 0

M = 32

−1 −0.5 0

M = 16

−1 −0.5 0
−5

0

5

M = 8

extrema
plus zero
ρ = 0.5
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some results
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. . . but first, a recap

input:

nonlinear delay system

Approximation with ODEs

+

software for ODEs

output: bifurcation analysis

“G”

{ −̇→
V = D̂M

−→
V + d̂Mv0 − ρ

−→
V

v̇0 = G(pM(v0,
−→
V ))

0 1 2 3 4 5
0

1

2

3

4

µv

p
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A physiologically structured model
model definition


b(t) =

∫ ∞
0

β(a, St)F(a)b(t − a)da

Ṡ(t) = rS(t)
(

1− S(t)
K

)
−
∫ ∞

0
γ(a, St)F(a)b(t − a)da

F(a) = e−µa, β(a, St) = αγ(a, St), γ(a, St) =
S(t)

1 + S(t)
`(a; St)

2

where α, µ, r, K are positive parameters and `(a; St) is the length of an
individual that has age a at time t, defined by

`(a; St) :=

∫ a

0

S(t − σ)
1 + S(t − σ)

e−σdσ.
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A physiologically structured model
analysis with Matcont for Matlab, software for ODEs

Output of the pseudospectral discretization for M = 20, ρ = µ
2

and reference values obtained from equivalent ODE formulation (crosses)

Bifurcation diagram w.r.t. K

0 2 4 6 8
0

2

4

6

BP H

Stability regions in (K, α)

0 5 10 15
0

5

10

15

K

α
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A physiologically structured model
numerical error

Error in detection of BP and H, increasing M.
Notice spectral accuracy

100 101
10−10

10−5

100

M

Gyllenberg, S., Vermiglio, submitted, 2017
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Conclusions

• potentially “automatic” discretization for general DEs

• exploits pre-existing software for ODEs

. . . and open problems
• convergence of eigenvalues τ =∞ (requires suitable bounds of

interpolation error)

• approximation of periodic solutions (also for τ <∞)

• models with bounded state-dependent delay

• models from real applications (computationally challenging)

Thanks for your attention!
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