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CHIC

Computational Horizons in Cancer

* The CHIC Project (2013-2017) was an European Project to
create mathematical models on cancer growth and
response to treatment

* Joint work between mathematicians, clinicians and biologist

* Models: Nephroblastoma, Glioblastoma, Lung and Prostate
cancers



Prostate cancer

Prostate cancer is a very common disease in man.

Fortunately, it:
* Grows slowly

* Can be early diagnosed

* Can be treated with radiotherapy or surgery,
eventually with hormone therapy

* In case of surgery, the relapse could be monitored by
PSA exam




Avallable data

EUREKA1 study, made by our group, collects a large
number of data of prostatectomized human patients.

In particular:

* Stage of the tumor

* Gleason Score (hystologic scoring of the removed tumor)
* Risk parameters (positive margins, lymph nodes...)

* Adjuvant therapies

* PSA: each 4-6 months patients should make the Prostate
Specific Antigen exam; it is a good biomarker for the

relapse




The usage of PSA
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We can use, in case of prostate
cancer, the PSA as a MIRROR of
the real volume of the tumor.

But pay attention... it is not a
perfect mirror... (we can't see the
'vampire'l)




Mathematical model

In our Phenomenological Universalities (PUN) approach we
consider the following general law:
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In which N is the size of the tumor and c(t) is the function of the
growth coefficient, which derivative is described as a Taylor
expansion of c.

When n=0, N is the exponential growth law; when n=1 N is the
Gompertzian growth law and n=2 is the West growth law.




The mathematical model

Now we focus on Gompertz:
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Questions

®|s a Gompertz function a good approximation of our data?
®How we can estimate the growth parameters?

®Patients with similar clinical characteristics have similar
growth parameters?

® Are the growth parameters predictive factors of a relapse
after the therapy?
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Particle Swarm Optimization

It iIs a cooperative method first introduced
by Kennedy (social psychologist) and
Eberhart (electrical engineer).

Using a stochastic method we can simulate
trajectories of all singles birds by considering their
selfish (to explore by own, to remember where
food was more abundant) and social (to return in
the swarm and share information) behaviour and
consequently to simulate the motion of the swarm.

If a good trade-off between the two behaviours is
allowed then the flock can reach the minimum
(i.e. the place with maximum availability of food).




Swarm Intelligence

1. We initialize randomly the position p. of

the bees in the search space with a
random velocity v.

position:
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Where j is the number of iterations, g is the global best position,

| is the best position of the single bee, o is the inertia weight
and ¢, ¢, are the cognitive and social behaviours.




Swarm Intelligence

In our case, the objective function is: ®
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And we want to find the best values of ¢, and p.

Problem: this method needs a large cardinality of the
sample (n) but — the number of available PSA is 6 (in

average).

We create a larger sample reconstructing the PSA
curve with RBF




RBF

o Given aset Xy = {(xj,yi) ER?,i=1,.... N} of N distinct nodes, in
a domain Q C R?, and a set Fy = {f; = f(x;.yi).i=1..... N} of
data values, the standard RBF interpolation problem consists in
finding an interpolant R : 2 — R of the form:

N
R(x.y) =) co(ll(x.y) = (xiyi)ll2). (x.y)e (1)
=1

where || - ||2 is the Euclidean norm, and ¢ : [0,00) — R is a RBF.

o The coefficients {¢;}!_, are determined by enforcing the interpolation
conditions R(x;,yj)=fi, i=1,.... N.

@ [his leads to a symmetric linear system of equations:
bc =F, (2)
where ® ;i = o(||(xk, vk) — (i, vi)ll2), k,i=1..... N.




RBF — PSO

* Radial Basis Functions (RBFs) to
have more data

Robust: OK also in case of non-
monotonic and irregularly spaced
data!

* Particle S warm Optimization
(PSO) to estimate the
parameters

(Gompertzian) curve reconstruction

Best shape parameter. 0.0010837
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Real versus estimated heights (RMSE ., = 0.91303, RMSE . = 091302)
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pathological
Gleason Cumulative | Cumulative
Score | Erequency | Percent | Frequency Percent
0 ] 1.49 6 1.49
4 3 0.74 9 223
5 27 6.68 36 801
b 82 20.30 118 2921
7 179 4431 297 73351
8 66 16.34 363 89.85
9 40 9.90 403 99.75
10 1 0.25 404 100.00
pathological Cumulative | Cumulative
stage | Frequency | Percent | Frequency Percent
NA 35 8.66 35 5.66
pT2a 44 10.89 79 1955
pT2b 18 4.46 97 2401
pT3c 148 36.63 245 60.64
pT3a 79 19.55 324 80.20
pT3b 77 19.06 401 99 26
prT4 3 0.74 404 100.00

Data set

Cumulative | Cumulative

Adjuvant HT (months) | Frequency | Percent | Frequency Percent
No HT 313 7748 313 7748

< 6 months of HT B 149 319 78.96
6 < months of HT == 12 10 248 329 8144

12 <= months of HT == 24 24 5.94 353 873
= 24 months of HT 51 12.62 404 100.00
40 4 p at i en ts Adjuvant Cumulative | Cumulative
RT | Frequency | Percent | Frequency Percent

at the No 326 80.69 3126 80.69
beginning... Yes 78| 1931 404 100.00
True time to Cumulative | Cumulative

relapse | Frequency | Percent | Frequency Percent

0 47 11.63 47 11.63

T == 24 months 160 39.60 207 51.24

24=T==48m 121 2095 328 81.19

48<T==72m 47 1163 375 0282

T =72 months 29 7.18 404 100.00




Data set

pathological . ) True time to Cumulative | Cumulative
Gleason Cumulative | Cumulative relapse | Frequency | Percent | Frequency Percent
Score | Frequency | Percent | Frequency Percent
0 14 5.65 14 5.65
0 4 1.61 4 1.61
E ; ) — 52 T == 24 months 117 47.18 131 52.82
3 1.21 2.
: — - " = 24<T<=48m 64 2581 195 78.63
22 87 11,
p - 39 - o 48<T==72m 30 12.10 225 90.73
2.3 /! e
T =72 months 23 9.27 245 100.00
7 126 5081 213 8589
] 24 9.63 237 9556
9 11 444 248 100.00
248 patients without adjuvant
pathological Cumulative | Cumulative = =
stage | Frequency | Percent | Frequency Percent t h e I'a p I es a n d W I t h a
NA 2| e 2|  ne successful surgery (first PSA
pT2a 37 1492 66 2661
<0.2)
pT2b 14 5.65 80 32.26 afte rsu rg € ry 0 - 2
pT3c 112 45.16 192 7742
pT3a 48 19.35 240 96.77
pT3b 8 3.23 248 100.00




Results

Using the complete series, we successfully reconstruct the
real PSA series with the estimated parameters.
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High correlation
between the real
time to relapse
(indicated by
clinicians) and the
estimated time to
relapse (curve
created using
estimated c0 and
beta)
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High correlation
between the real
time to relapse
(indicated by
clinicians) and the
estimated time to
relapse (curve
created using
estimated cO and
beta AFTER ONLY
4 VALUES)
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Examples of output
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Conclusions

* PSO can be used to find the parameters of a Gompertzian .
function describing the growth of PSA values.

* RBF can be used to increase the size of the sample. .
* Using only 4 PSA values we can have a prediction of theé
timing of relapse of the patient.

* We must pay attention to the series: duplicate, too
distant in time, oscillating values could affect the
estimation of the parameters!!!




Thank you for your attention!

h < g e
Caterina | P ] .
Guiot ™ {’” / W .!"; Ezio Venturino
(the boss, 527, = i . (Professor,
physicist), ~ L " Imathematician)
A 4
.
F_

llaria Stura  P°omenico

(PhD, GaII:;iBele
M mathematician) ( Y
i clinician)

Emma_ .
Perracchione
A bee of the | (PhD,
swarm mathematician)
(mascot,

worker)
\]




	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

