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* In this talk we present a topological desription of the
ecological transformations, an application of a multiagent
ago-antagonist model in order to describe an ecosystem and a
related stochasic model.

* An ecological system E 1s composed by different interacting

communities as a set of species. Our 1dea 1s to consider the ecological
niches as a basins where some species go in and others go out.

* Network structures have been recognized as one of a most suitable
mathematical tools to model the interactions among the elementary
components of complex systems.



* Phenotypically an ecological system can be
represented by a subset G of N — dimensional
Euclidean space, where N 1s the maximum possible
number of phenotypical characters (# 0) related to the
individuals which belong to E. E is characterized to
have a number of ecological niches . (where 1n a j-
community several species live togetfler) and possible
paths from a niche to another.

e Utilizing 1n this description a network-graph (by
means of d-expressions) one has a so called
phenotypical fitness landscape on G.



We denote by ¢; — fthe thick edge ot [;. «; 1s called periphery of the
niche f; and f, - o;1s called nucleus of ,B]] . In general f - o, # &

Niche as packing of species

Meccanismi di coesistenza

Nicchia ecologica: “impacchettamento” di specie

Stratificazione di piante
specializzate e di nicchie
animali a vari livelli di una
foresta tropicale pluviale (da
Miller 1997).

Queste nicchie specializzate
permettono alle specie di
evitare o minimizzare Ia
competizione per le risorse
con le altre e permettono la
coabitazione di una grande
varieta di specie.

Aterzs in meri

La specializzazione della
nicchia é regolata
dall’adattamento delle piante
a livelli diversi di Iluce
disponibile negli strati della
foresta e da centinaia di
migliaia di anni di evoluzione
in un clima abbastanza
costante.
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* I[f A" < G and B” < G (with n < N) are two sets of the n-tuples, which
belong to a subset of R™ and which determine the values of
phenotypical characters of the indidviduals respectively of a species i
and of the species u. Of course these n-tuples depend on ¢.

* Let a”(z,) € F c R" be a phenotype-size associated to a n-tuple of 4"
c G; likewise b”, for B — G ,we can consider the functions:

7AN

(1) xl.(a;,t_s)3{“i’t—s}c ﬂj.—){a';,t_r}c a; C B,

Likewise
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* The phenotype transformations into the niche [, are determined by
previous functions x; and y,. The niche f; 1s constituted by the set
phenotype-sizes of its individuals.

* The functions x; and y, establish for every considered phenotype size, a
little alteration (during the time) of its value, which does not go far the
specific range of compatibility of the species i or u. I.e., the passage
(thtough y,) from ¢; to f. - &; of a phenotype 1s represented by an
alteration of the value aneh makes the phenotype (1nd1v1duals)
compatible with [, - «; . Because every individual of a species has an

its own phenotype value, these transformations-functions x; and y

regard at the time ¢, the set of individuals (Domain of x; or y, ) of the

considered species ‘which stay or 1n periphery or in the nueleus of the
niche. But it 1s possible that some individuals of the same species have
not a phenotype alteration, while other individuals have an alteration.

In this case it is necessary to distinguish on the functions x; or y,, .

* It 1s easy to establisch for x; and y, the notion of velocity of
transformation




* In the case a) of the nearby e TIEERIT
. AN e [+ A s
schema exemple, the species A, S| 7 wemBl FE
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functions x; prevail and the niche
bicomes very fragile.

Niche dimension 1

b)
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bicomes very robust.

Niche dimension 1



e O - EXPRESSIONS

A network structure can be represented by means of a compact
symbolism. This symbolism 1s established by expressions which
we will call @ - expressions. This symbolism 1s based on the graph
theory (the literature 1s very wide, 1.e. Oliver Cogis & Claudine
Robert, James R. Peterson (Petri net theory), Mark Buchanam
(Nexus theory), etc.). According to our interpretation, the vertices -
of a graph (network structure) represent the Domain or the
Codomain of the functions x; or y . The arcs — of the graph
represent the previous funcions. So e.g. - —-. denotes :

s = Domx, = r = Codomyx,

Likewise for y , by <



Now we gave some exemples
of this symbolism.

(2) <MD" >x,

where s denotes the «<name» of a
considered vertex, which
represents a basin

m 1s the number of x;, that 1s the
number of the arcs which go out
from s

n 1s the number of arcs y, which
go 1n s.

Ofcourse0<i<mandO<u<n.

See figure whens=1,m=2 and n
=3




 We have also two other kinds of
basin:

m g
< (I)S<xl-
and the case

>Qr >y,

See near here the related figures



We have also two kinds of paths:

x-path

3) O, p>x,

where i, 1n this case, denotes the «namesy

of n + 1 vertices connected by arcs x; in
sequence with the same direction

y-path

>(ij=1y fi
where j, in this case, denotes the «<names»
ot m + 1 vertices connected by arcs y; in

sequence with the same direction, but
opposite of the previous

o
i J



* Connexions among basins and
paths are possible. As symbol of
connexion in or from the vertex i
we utilize @, so, for instance:

(<D >x;, ;) O, (P*>x;) @,
Dy (CD*s>x,, ;) O ;)
with y, = x4
See near here figure
NB: We have the following

syntax rule: If @, and @; are two
d-expressions then

O, D, ®;1s a P-expression




* When one studies a network structure, at first one must
state the ®d-expression which 1s considered in order to
describe the situation among the previous functions.



* DETERMINISTIC DYNAMICS

* In general, even if we consider 1.e. a basin <"®" >x,, y; , 1t 1 possible
establish the following dynamics. We will consider a general case of
degree n of paroxysm according the Cherruault model.

( n n n n n n
5Cl = all(zxi _Zyi)+al2(zxi _Zyi)z +“'+a1n(zxi _Zyi)n
i=1 i=1 i=1 i= i= i=

X, =an1(le. —Zyi)+an2(2xl. —Zyl.)2 +...+ann(2xl. —Zyi)”
i=1 i=1 i=1 i=1 i=1 i=1

(4) ) n n n n n n
" :bll(zxi _Zyi)+b12(zxi _Zyi)2 +“'+bln(zxi _Zyi)n
i=1 i=1 i=1 i=1 i=1 i=1

j’n :bnl(zxi _Zyi)+bn2(zxi _Zyi)z +“'+bnn(zxi _Zyz')n
L i=l i=l i=l i=1 i=1 i=1



* If in the previous system we subtract member to member, we have:

ICEISITED ITEENIICHR) YR
IO DI

We will call
(5) Z= Zx Zy out-in balance
If we put Z(xi_y-i)zz-

Z(aéi —b))=¢,
=1

> (x-y)=z
=1



 We obtain:

n
(6) z=) ¢z’
i=1

* Now one can consider z and ¢ as two independent variables and one
can consider a two independent variables function W(z, 1), for instance
SO

(7) W(z.t)==2,

I
C;, (2
]

which we call out-in potential . Hence the previous equation (5)
bicomes

(8) Z,:_aW(Z,t)
oz




* The condition 1n order to have a basin (1.e. the center of an ecological
niche) 1s to have local minima of the potential #(z, ¢r). We have also
the following classification:

<"Q" >x;, y; @ semiattractive or semirepulsive basin or niche
<"® <x; : repulsive basin or niche
> > y, @ attractive basin or niche

We could study this mathematical representation in the context of a
functional space



* In conclusion, we have a basin when we have a minimum z = z_ for the out-
in potential W(z, f).

* But the value of W(z, ¢) in z = z_ depend on the mathematical form of the
expression of the same W(z, t). A discussion about this value is linked also
the ecological situation which z expresses.

- For 1nsance, when
" )
z, =Y x. thatis) y, =0

the input-functions annul its effects, hence the niche tends to have above all
species in the periphery ¢; < f. The j-community is more fragile.

- when " "
z,=» y, thatis) x, =0
= =

the out-functions annul its effects, so the niche tends to S - ¢; and the /-
community become more robust.



* Moreover, when 5 m,
X, = E y;, <z=0
I j=1

the niche has IN and OUT equivalence. We have a kind of equilibrium.

We state that if the phenotype-size of the individuals of a species A 1s greater
than that of another species B then the species A 1s biologically more robust

than B. So, when:
n o)
Y x>y <z>0
i=1 j=l

both n, > n, and n, <n, the out- functions prevail and the niche is
biologically more fragile. While, when

the niche becomes more robust (the in-functions prevail).



* While for a x- path the transformations can be expressed respectively,
for the case [D"._,>x; |,by

n n n n " . i
sz :Zaﬂzxi +Zai2 leZ +---+Zdl-nz?€f”
i=l - -

i=l i=l i=l i=l i=l i=l

and i1f one puts: oL L
P D=t D=6 =x

we have:

X = Z c,x'
i=1
And likewise for the case y-path [>D",_,y; |:

y= Zciyi
i=1



* Hence the total transformations of a considered network discrete
structure can be described by a number » (which depends on the
number » of basins) of basin-equations, a number s (which depends on
the number s of x-paths) of x-paths equations and a number u (which
depends on the number u of y-paths) of y-paths equations.

* In general an ecosystem is constitute by a number of niches linked
through x-paths and y-paths. These represent trajectories of ecological
transformations. It 1s interesting to study also when 1solated niches

exist.



* STOCHASTIC DYNAMICS

But the dynamics of our ecological systems 1s labeled by the behaviour
of z also with the addition of a stochastic dynamics component, so
(equation of Smoluchowski):

(9) zz—an’t) 2T E(r)

where T 1s a temperature of the ecological system that measures the
stability of the different species and &(¢) 1s a white noise.

Without loss of generality we set W(z, ¢) < 0 1n the region of a basin, that
1s 1n the neighbourhood of z,. So that the quantity

(10) =Wz, O)/T

S

1s the deepness of the potential well (of z,) using 7" as potential unit.



* Without the noise effect (1.e. 7= 0) we stay in the situation of (8)
where any individual of the j~-community 1s attracted by the critical
point , that 1s the individual stay in the nucleus /. - ¢; or in periphery

but it does not go out from f; .

. On the contrary, for 7> 0 each trajectory has the possibility to jump
between potential wells, that 1s niches, modelling an interactions
between the corresponding communities. In this case the topological
description of the trajectory from a niche to another is represented by
O";,_>x;and /or >O",_,y. .

* We detine success of the j-community n*; the number of individuals of

the different species that populate the corresponding niche.

* Remark 1: According to our interpretation of the model, the success of
the j-community 1s directly proportional to the probablhty of finding a
representative individual (standard representative individual) in the
neighborhood of z,



* Remark 2 : One can associate a stationary distribution probability
P (z) to the stochastic dynamics (9) according to:

(11) P (z)=A exp (- W(z, t)/T)

® Remark 3: According to (11) in the stationary state the success n*; of
the j-community 1s given by the deepness of the potential well
(Maxwell-Boltzmann distribution)

(12) n*; oc exp (W)
and the relation
(13) ij 1,...,Nn*j = M;

give the total number of the individuals in the ecosystem.



* Remark 4: One can prove that the escape rate from the W -potential
well 1s proportional to (Arrhenius’ law)

(14) Pesc, j(Z) o CXp (' VV])

* Remark 5: A possible defintion of the interaction rate r; of the
community j with the community i depends on the related potential
wells, so:

*

n.

l

! il
Mnj

(15) T, =ﬁexp( Wl.—Wj):

where M 1s the number of different communities.



* The Lotka-Volterra equations describe, in a effective way, the average
dynamics of the community success 7.(7). We impose the existence of
stationary equilibrium »*, and we introduce a birth rate g (which
represents the reproduction mechanism). The condition g > 0 implies
the stability for the stationary solution »*; and g 1s directly
proportional to the exponential of the fitness. Because we consider M
communities, the Lotka-Volterra equation becomes a system of

equations. Hence the matrix
(7[1']' - 511) =

7Ty Ty 1 T1 0]
. |—10 0
| T T 0 1

withi=1,...,M, represents a cooperative interaction among the
communities



Therefore we write the Lotka-Volterra dynamics of the communities as

M
’;li = N, g(ni _nz')+2(7[ij _51’1')”]'
=1

i=1,... M

(16)

We are interested in the dynamics near the stationary state n.~n,"

1n this case

y J

M
n: = Zﬂn* withi=1,... M
j=1

1.e. n* 1s the eigenvector of the matrix 7; with eigenvalue 1.



Now we denote by m, the numerousness of a i- community or of i-

species. And we denote by £+, the Van Kampen operators which

increases by an unitary quantity the numerousness m; , so 1.e.:

EP(m)=P(m,,...,m *1,..m,)

and we can intoduce the Master Equation so

N
P(m,t) = Z ni(E —1)
=1

(g + Lym;P(m,t) — B




We have an explicit solution

N m; N
o T NG Y k-1
i=1 kE:]_ g 1

That could be used to study the existence of different communities in a
ecological system from empirical data.
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