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glucose metabolism

energy is required for the normal functioning of the organs in a living organism

glucose provides most of the energy necessary to the body

glucose metabolism is the cornerstone of life
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second destiny
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pathologies

diabetes

liver is an important storage site for glucose

insulin works to keep glucose concentration normal

diabetes is a malfunction of insuline: glucose concentration in blood is altered

cancer

braunstein 1921: glucose secretion in the urine disappears in those who develop
cancer

warburg 1924: cancer cells increase glucose uptake in aerobic conditions

glucose cell metabolism: it’s all about cancer (ward and thompson, cancer cells, 2012)

therefore: imaging glucose metabolism would help diagnosis, prognosis and therapy
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glucose-PET

positron emission tomography (PET) is a functional medical imaging modality

in principle, PET could image glucose metabolism by means of a procedure like this:

1 glucose (C6H12O6) is tagged by means of a positron emitter

2 the tagged glucose tracer is injected into the blood

3 each emitted positron annihilates with a tissue electron, emitting light along a
perfect straight line

4 collimators collect the emitted light whose distribution is a signature of glucose
distribution in time and space

warning: this can’t work:
15O decays in 120 seconds

tritium decays in 2000 years (and is a weak beta emitter)
11C decays in 20 minutes (but asks for very complex dynamic analysis)
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FDG-PET

fluorodeoxyglucose (FDG) is a glucose analog

FDG decays in 2 hours: FDG-PET is feasible
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mathematical model
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FDG-PET sinograms

f (x): tracer distribution

L(θ, s): light path with orientation θ at distance s from
the origin

g(s, θ) =
∫
L(θ,s)

f (x)dx

R : S(R2)→ S(C 2) Rf (θ, s) :=

∫
L(θ,s)

f (x)dx

g = Rf

note that:

the radon transform is compact in (weighted) L2-spaces

therefore the inverse radon transform is not bounded

therefore naive solution are numerically unstable

therefore, at some stage, regularization is needed
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image reconstruction: maximum likelihood

the inverse problem of FDG-PET image reconstruction:
given the FDG-PET sinogram reconstruct the FDG distribution in the whole body

bayes theorem + MAP:

π(f |g) =
πprior (f )π(g |f )

π(g)

fest = arg max
f≥0

π(f |g)

example of πprior (f ) : f ≥ 0

poisson noise: kullbach-leibler

L(f , g) =
∑
i

gi log
gi

(Rf )i
+ (Rf )i − gi

fest = arg max
f≥0

π(g |f ) = arg min
f≥0

L(x , y)

EM: f (k+1) =
f (k)

RT1
RT g

Rf (k)

issues:

how to regularize: choose the right stopping rule (benvenuto and piana, inverse
problems, 2014)

how to go fast : gradient projection approaches (benvenuto, zanella, zanni and bertero,
inverse problems, 2010)

how to encode more sophisticated information in πprior (f ) (calvini, massone, nobili and
rodriguez, IEEE transactions on nuclear science, 2006; sorrentino et al, annals of applied
statistics, 2013)



glucose and FDG mathematical model compartments metabolism: tissue

image reconstruction: maximum likelihood

the inverse problem of FDG-PET image reconstruction:
given the FDG-PET sinogram reconstruct the FDG distribution in the whole body

bayes theorem + MAP:

π(f |g) =
πprior (f )π(g |f )

π(g)

fest = arg max
f≥0

π(f |g)

example of πprior (f ) : f ≥ 0

poisson noise: kullbach-leibler

L(f , g) =
∑
i

gi log
gi

(Rf )i
+ (Rf )i − gi

fest = arg max
f≥0

π(g |f ) = arg min
f≥0

L(x , y)

EM: f (k+1) =
f (k)

RT1
RT g

Rf (k)

issues:

how to regularize: choose the right stopping rule (benvenuto and piana, inverse
problems, 2014)

how to go fast : gradient projection approaches (benvenuto, zanella, zanni and bertero,
inverse problems, 2010)

how to encode more sophisticated information in πprior (f ) (calvini, massone, nobili and
rodriguez, IEEE transactions on nuclear science, 2006; sorrentino et al, annals of applied
statistics, 2013)



glucose and FDG mathematical model compartments metabolism: tissue

image reconstruction: maximum likelihood

the inverse problem of FDG-PET image reconstruction:
given the FDG-PET sinogram reconstruct the FDG distribution in the whole body

bayes theorem + MAP:

π(f |g) =
πprior (f )π(g |f )

π(g)

fest = arg max
f≥0

π(f |g)

example of πprior (f ) : f ≥ 0

poisson noise: kullbach-leibler

L(f , g) =
∑
i

gi log
gi

(Rf )i
+ (Rf )i − gi

fest = arg max
f≥0

π(g |f ) = arg min
f≥0

L(x , y)

EM: f (k+1) =
f (k)

RT1
RT g

Rf (k)

issues:

how to regularize: choose the right stopping rule (benvenuto and piana, inverse
problems, 2014)

how to go fast : gradient projection approaches (benvenuto, zanella, zanni and bertero,
inverse problems, 2010)

how to encode more sophisticated information in πprior (f ) (calvini, massone, nobili and
rodriguez, IEEE transactions on nuclear science, 2006; sorrentino et al, annals of applied
statistics, 2013)



glucose and FDG mathematical model compartments metabolism: tissue

image reconstruction: maximum likelihood

the inverse problem of FDG-PET image reconstruction:
given the FDG-PET sinogram reconstruct the FDG distribution in the whole body

bayes theorem + MAP:

π(f |g) =
πprior (f )π(g |f )

π(g)

fest = arg max
f≥0

π(f |g)

example of πprior (f ) : f ≥ 0

poisson noise: kullbach-leibler

L(f , g) =
∑
i

gi log
gi

(Rf )i
+ (Rf )i − gi

fest = arg max
f≥0

π(g |f ) = arg min
f≥0

L(x , y)

EM: f (k+1) =
f (k)

RT1
RT g

Rf (k)

issues:

how to regularize: choose the right stopping rule (benvenuto and piana, inverse
problems, 2014)

how to go fast : gradient projection approaches (benvenuto, zanella, zanni and bertero,
inverse problems, 2010)

how to encode more sophisticated information in πprior (f ) (calvini, massone, nobili and
rodriguez, IEEE transactions on nuclear science, 2006; sorrentino et al, annals of applied
statistics, 2013)



glucose and FDG mathematical model compartments metabolism: tissue

compartments
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from body to tissue

image reconstruction provides information on FDG metabolism at a whole body
level using static data

in order to have information on tissue metabolism one needs

I dynamic data
I compartmental analysis



glucose and FDG mathematical model compartments metabolism: tissue

two-compartment model

(sokoloff et al, j neurochem, 1977)

compartment b: tracer input

compartments f and m: free (out of cells) and metabolized FDG

Cb: input tracer concentration

Cf and Cm: concentration of free and metabolized FDG

kfb, kbf , kmf , kfm: tracer coefficients (minutes−1): measure the efficiency with which
tracer passes from one functional compartment to the other

physical assumptions:

tracer is uniformly distributed in each compartment

diffusive effects are neglected

physiological processes are in a steady state

conservation of tracer between compartments holds
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forward problem

Ċf = −(kbf + kmf )Cf + kfmCm + kfbCb

Ċm = kmf Cf − kfmCm

M =

(
−(kbf + kmf ) kfm

kmf −kfm

)
W (t) =

(
Cb(t)

0

)
C =

(
Cf

Cm

)

Ċ = MC + kfbW

C(t) = kfb

∫ t

0

Cb(u) exp((t − u)M)e1du
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inverse problem

the measured data are Cb and Cf + Cm

Cb is obtained from Region of Interests drawn over PET images of the left
ventricle at many times t

Cf + Cm is obtained from Region of Interests drawn over PET images of the
overall organ at many times t

the inverse problem to solve is

Cf + Cm = αTkfb

∫ t

0

Cb(u) exp((t − u)M)e1du α =

(
1
1

)
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uniqueness

(delbary, garbarino and vivaldi, inverse problems, 2016)

theorem: given k and k′ solutions of the equation

Cf + Cm = αT kfb

∫ t

0
Cb(u) exp((t − u)M)e1du α =

(
1
1

)
such that k, k′ ∈ R4

+ \ {0}, then k = k′.

Proof (sketch): computing the laplace transform of the equation leads to

αT (s −M′)−1e1 = αT (s −M)−1e1.

this implies
Q(s)

P(s)
=

Q′(s)

P′(s)

where Q(s),P(s) are co-prime polynomials of degree 1 and 2, respectively. this implies
Q(s) = Q′(s) and P(s) = P′(s). this in turn implies k = k′
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inversion method

given k = (kfb, kbf , kmf , kfm) ∈ R4
+ and Cb measured from PET images, define

F : R4
+ → C 1(R+) [F(k)](t) = αTkfb

∫ t

0

Cb(u) exp((t − u)M)e1du

and find k such that
F(k) = Cf + Cm

newton’s algorithm:
F (k) := (Cf + Cm)−F(k)

F (k) = 0

initial guess: k = k0 + h

F ′(k0)h = −F (k0) (regularization needed)

update: k0 = k
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metabolism: tissue
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liver - 1

liver both stores and releases glucose

the need to store or release glucose is signaled by insulin

two possible therapies against insulin malfunction

1 look for drugs that mimic insulin
2 look for drugs that regulate glucose release from liver: metformin
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liver - 2

(garbarino, vivaldi, buschiazzo, delbary, marini, caviglia, piana and sambuceti, european journal
of nuclear medicine and molecular imaging research, 2015)
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liver - 3

(garbarino, vivaldi, buschiazzo, delbary, marini, caviglia, piana and sambuceti, european journal
of nuclear medicine and molecular imaging research, 2015)

Ca 
(arterial blood) 

Cm 
(metabolized 

tissue) 

Cf 
(free tissue) 

Liver 

blood + FDG 

FDG 

Cp 
(venous blood- 

portal vein) 

Cs 
(suprahepatic 

vein) 

blood + FDG 

Ct 
(metabolized 

tissue) 

Cg 
(free tissue) 

FDG 

Gut 

blood + FDG 

blood + FDG 

blood + FDG 
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liver - 4
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parametric imaging - 1

(scussolini, garbarino, sambuceti, caviglia and piana, inverse problems, 2017)

is it possible to solve the compartmental inverse problem pixel-wise?

numerical scheme:

1 gaussian smoothing (to increase the signal-to-noise ratio)

2 segmentation (to automatically identify the region of physiological interest)

3 pixel-wise regularized gauss-newton inversion of the nuclear data
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parametric imaging - 2
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a (possible) breakthrough
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a new model - biochemistry
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a new model - data and unknowns

unknowns: five kinetic parameters (1/min) mimicking the actions of the enzymes GLUT,
HK, G6PT, G6Pase

input data:

the input function Cb

the overall FDG concentration in the tumor: Cmeas = Cf + Cp + Cr where

I Cf is the cytosolic free tracer
I Cp is the cytosolic phosphorylated tracer
I Cr is the phosphorylated tracer in the endoplasmic reticulum
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forward problem

Ċ = MC + k1W

M =

 −(k2 + k3) 0 k6

k3 −k5 0
0 k5 −k6

 C =

 Cf

Cp

Cr

 W (t) =

 Cb(t)
0
0


Cmeas := Cf + Cp + Cr = k1α

T

∫ t

0

Cb(u) exp((t − u)M)e1du

note: uniqueness holds (scussolini and caviglia, j. math. biol., submitted)
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CT26 - 1

(a) Mouse model - ROIs
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(b) CT26 tumor
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(c) Arterial blood IF
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CT26 - 2

experimental k3 = 0.91± 0.12
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